Current-driven magnetization reversal and spin-wave excitations in Co /Cu /Co pillars
نویسندگان
چکیده
Using thin film pillars approximately 100 nm in diameter, containing two Co layers of different thicknesses separated by a Cu spacer, we examine the process by which the scattering from the ferromagnetic layers of spin-polarized currents flowing perpendicular to the layers causes controlled reversal of the moment direction in the thin Co layer. The well-defined geometry permits a quantitative analysis of this spin-transfer effect, allowing tests of competing theories for the mechanism and also new insight concerning magnetic damping. When large magnetic fields are applied, the spin-polarized current no longer fully reverses the magnetic moment, but instead stimulates spin-wave excitations.
منابع مشابه
Current-induced magnetization reversal in high magnetic fields in Co/Cu/Co nanopillars.
Current-induced magnetization dynamics in Co/Cu/Co trilayer nanopillars (approximately 100 nm in diameter) have been studied experimentally at low temperatures for large applied fields perpendicular to the layers. At 4.2 K an abrupt and hysteretic increase in resistance is observed at high current densities for one polarity of the current, comparable to the giant magnetoresistance effect observ...
متن کاملBipolar high-field excitations in Co/Cu/Co nanopillars
Current-induced magnetic excitations in Co/Cu/Co bilayer nanopillars s,50 nm in diameterd have been studied experimentally at low temperatures for large applied fields perpendicular to the layers. At sufficiently high current densities excitations, which lead to a decrease in differential resistance, are observed for both current polarities. Such bipolar excitations are not expected in a single...
متن کاملCurrent-induced excitations in single cobalt ferromagnetic layer nanopillars.
Current-induced excitations in Cu/Co/Cu single ferromagnetic layer nanopillars ( approximately 50 nm in diameter) have been studied experimentally as a function of Co layer thickness at low temperatures for large applied fields perpendicular to the layers. For asymmetric junctions current-induced excitations are observed at high current densities for only one polarity of the current and are abs...
متن کاملCurrent-induced effective magnetic fields in Co/Cu/Co nanopillars
We present a method to measure the effective field contribution to spin-transfer-induced interactions between the magnetic layers in a bilayer nanostructure, which enables spin current effects to be distinguished from the usual charge-current-induced magnetic fields. This technique is demonstrated on submicron Co/Cu/Co nanopillars. The hysteresis loop of one of the magnetic layers in the bilaye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 84 14 شماره
صفحات -
تاریخ انتشار 2000